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A general theory of X-ray diffraction in a finite crystal is developed on the basis of an approximate 
treatment of the coupling between incident and diffracted beams. The theory leads to a universal 
formula for the integrated intensity of the diffracted beam, valid over the entire range from the perfect 
to the ideal mosaic crystal. The application of the theory to the mosaic model of a real crystal yields 
C.G.Darwin's theory of secondary extinction when the perfect domains are in poor alignment, in 
which case the half width of the distribution function for the orientation of the domains can be obtained 
experimentally. However, the general theory gives a new intensity formula if the domains are in good 
alignment. The intensity dependence upon wave length is different, and experiment will give the mean 
radius of a perfect domain. 

1. Introduction 

This paper describes the derivation of a universal inten- 
sity formula for X-ray diffraction in real crystals. 

If ~ is the integrated intensity of a diffracted beam, 
one may set 

~ = ~ k Y  (1) 

where ~@~ is the kinematical approximation and y the 
extinction factor. Thus the problem is that of finding 
the general expression for the quantity y. 

The formula for ~ c  is the familiar one 

~k= de ovA(lt )Q (2a) 

e2FK 2 . 

Q= mJ-vv ~'3/sln 20 (2b) 

where J 0  is the incident intensity, v the irradiated crys- 

tal volume and A(/z)=v -1 I exp(-lzT)dv the trans- 
T. /  

mission factor with/z the linear absorption coefficient 
and T the path length through the crystal. K =  1 for 
the normal and K = c o s  20 for the parallel component 
of polarization. The other symbols of equation (2b) 
have their usual meanings. 

Clearly the kinematical theory (for which y =  1) on 
the one hand and the dynamical theory of Darwin 
(1914a, b) and Ewald (1916a, b, 1917) on the other must 
be contained in the general theory as limiting cases. 
However, the equations of the dynamical theory have 
been solved only for an infinite plane parallel crystal 
plate, and the expression for y is completely unknown 
for finite perfect crystals of any shape. The first impor- 
tant task of this paper is therefore the derivation of 
the general formula for the extinction factor of a finite 
perfect crystal. The account of this part of the investi- 
gation is presented in § 2. 

The treatment of X-ray diffraction in a real crystal 
will be based on the mosaic model first introduced by 
Darwin (1922). The real crystal is assumed to be an 
aggregate of perfect crystal domains. The boundary 

between two domains represents a surface of discon- 
tinuity in respect to the periodicity, and in general there 
is a small relative rotation of the two domains. If the 
real crystal contains many domains, it is reasonable 
to suppose that the misalignment obeys an isotropic 
Gaussian distribution law, i.e. 

W(,d) = ]/2g exp(-2r~g2A 2) (3) 

where A measures the angular deviation from the mean 
orientation. The derivation of the formulas for a real 
crystal is given in § 3. The assumed model of a real 
crystal is characterized by the mean radius of the per- 
fect crystal domains, r, and the quantity g of the Gaus- 
sian distribution of equation (3). The intensity formulas 
for a real crystal will accordingly contain r and g as 
parameters. 

Because of the complexity of the problem it has been 
necessary to introduce a number of approximations in 
the course of the derivations. Although these simpli- 
fications are believed to be theoretically justified, the 
ultimate test of the validity of the results must be 
agreement with experiment. A brief discussion of ex- 
perimental tests of the theory is given in § 4. 

2. The integrated intensity for a small perfect crystal 

The basic equations 
Let a plane wave of X-rays be incident on a perfect 

crystal of arbitrary shape near a Bragg angle such that 
a single diffracted beam is produced. It is convenient 
to assume that the reflecting lattice plane is vertical, 
and that all observations are made in the horizontal 
plane of incidence with a counter set to receive the 
total power associated with the diffracted beam. The 
crystal may be rotated about a vertical axis, and hence 
the direction of incidence is a function of a single 
parameter el which measures the deviation from the 
ideal Bragg angle. Refraction and ordinary absorption 
will be neglected. 

At the crystal surface the incident intensity has a 
constant value J0.  Upon entry into the crystal part of 
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the incident power will be transferred to the diffracted 
beam. However, the diffracted beam will again be dif- 
fracted and a fraction of the power will be retransferred 
to the incident beam. Thus the incident and the dif- 
fracted radiation form a coupled system within the 
crystal. 

The internal beams are slightly divergent, but can 
be approximated as plane waves with intensities I0 and 
! which are functions of position within the crystal. 
As shown in Fig. 1 the location of a volume element 
can be specified by two variables t~ and t2 representing 
the depth below the surface measured along the two 
propagation directions. The fundamental equations 
which I0 and I must satisfy are 

810 
- a l o + a l  (4a) 

Otl 

01 
- o'I4- aI0,  (4b) 

atE 

with the boundary conditions 

/0- -J0  for q = 0  

1=0  for rE=0. (4c) 

The quantity a, the coupling constant, is the diffracting 
power and measures the diffracted power per unit 
volume and intensity. Clearly cr is a function of the 
incidence direction et, and is different from zero only 
when 81 is very small. It will be assumed that a is a 
constant for given el, and that it can be evaluated from 
the kinematical theory of X-ray diffraction. 

Addition of equations (4a) and (4b) gives 

810 ~I 
c3t~-- + ~ = 0 (5) 

which expresses energy conservation. 

f 

Fig. 1. The location of a volume element in a diffracting crystal 
by means of the path lengths tl and t2 measured along the 
propagation directions. 

If I ( t l ,  t2) is the solution for the diffracted beam, the 
corresponding solution for the incident beam is 
10(tl, t 2 ) = J o - I ( t 2 ,  fi). Hence, it will suffice in the fol- 
lowing to specify only the function I(tl, t2). 

The total power of the diffracted beam, P(e~), as 
recorded in the counter, the diffraction pattern in other 
words, is 

I P(e~)= Iu .  d S =  -~/2 d v ,  (6) 

where u is the diffraction direction and dS a surface 
element of the crystal. The volume integral form of 
equation (6) is obtained by application of the diver- 
gence theorem. 

It is convenient to introduce a function ~0(a) defined 
by the relation 

e ( B 1 )  = ~ ¢ ' 0 / 3 o - ~ ( o - )  . ( 7 )  

Since the integrated intensity, ~ ,  is given by the inte- 
gral 

~ =  1 e (e l )de l  , (8) 

the expression for the extinction factor y becomes 

0-11  a~o(tr)del . (9) y =  

In the kinematical (or zero order approximation) all 
extinction effects are neglected, and the system of  equa- 
tions (4) is radically simplified to 

c~I° ~ 0  (lOa) 
Bt~ 

"~ I0 (10b) --  - r,~ O" . 
¢3t2 

The solutions are lo ~ J o ,  P(e l )  ~ a J o y ,  ~ ~ J o v Q  = ~ k  
and y ~ 1. 

The first order approximation neglects only the 'feed- 
back' term a I  of equation (4a), and gives the solutions 

I0 ~ J 0  exp( -  aq) 
I ~ J0[1 - exp( -  atE)] exp( -- ata) 
P ~ ~¢ovaA(a) 
~o(a) ~ A(a)= 1 - a[  4-1t72t2-1t73t 3 4- . . .  

I t n = v -1 (tx + t z )ndv .  (11) 

However, equation (5) is not satisfied by either ap- 
proximation, and it is obvious that equations (11) can 
be used only if a f ~  1. 

Exact solutions of equations (4) are readily obtained 
for an infinite plane parallel crystal plate of thickness 
D0. 

For the symmetrical Laue case (q = t2= t) one has 

I =  J0[1 - exp( -  2at)] /2  

~(a) = [1 - exp( -  2a0]/2af 
= 1 - t r f + 2 ( t r f ) 2 - ½ ( a f )  3 + . . .  

i =  D0/cos 0.  (12) 



560 A G E N E R A L  T H E O R Y  OF X-RAY D I F F R A C T I O N  IN C R Y S T A L S  

The exact solution for the symmetrical Bragg case 
(q = t, t2 = D -  t) is 

I = J o a ( D - t ) / ( 1  + a D )  
(p(a) = 1/(1 + a f ) =  1 - a f + ( a f ) E - ( a Q 3 +  . . .  

f=  D = D0/sin 0.  (13) 

Power series solution of equations (4) can be ob- 
tained for a perfect crystal of any shape totally im- 
mersed in the incident beam. (As shown in the Ap- 
pendix the solution can be given in analytic form in 
terms of Riemann functions.) It is convenient to give 
the result for ~I/~t2: 

c3I _ a J o  Z "--(----.-a-)n t (n) (14a) 
c3t2 n n. t 

t ( n ) = X  t'l-Jt~ . (14b) 
J 

Consider the special case of the parallelopiped shown 
in Fig. 2. Two of the edges are parallel to the incident 
and diffracted beams, the third is normal to the plane 
of incidence. For this shape the volume integral of 
equation (6) is readily evaluated. If all three edges 
t o , t o , t o are equal to to, one finds 

~(a)= 1--ato + ~(crto)2--1-7~(ato)3 + . . . .  (15) 

The general expression for arbitrary shape is 

~0(~)= z ( -G)~  n [ - -  t (n) (16) 

where t (n) = v-a I t (n)dv with t (n) given by equation 
t/ 

(14b). 
Let the crystal be a sphere of radius r. For small 

scattering angles one has t, ~ t 2 and 

l 3(2r)n 
v-i  tTdv= (n + l) (n + 3-) " (17) 

Hence, the formula for ~0(a) for a sphere and small 
scattering angles becomes 

~ 0  " 3  ¢p(a)= 1 - t r [ + ~ s ( a D E - ~ - r ( a t )  + . . . .  (18) 

with f=ar .  ~o(a) can also be evaluated for the back- 
ward scattering direction with the result 

~0(a) = 1 - ~r~+ ~ ( a 0 2  + . . . .  

However, at large scattering angles it is normally true 
that (rf~ 1, and hence equation (18) will be used as a 
general expression. 

The results given in equations (12), (13), (15), (18) 
show that the precise form of the function ~0(a) does 
depend on the crystal shape. The formula 

1 
~o(a)- 1 +tr f  ' (19) 

where f is the mean path length through the crystal, 
is exact for a plane parallel plate in the symmetrical 
Bragg case and, as shown by equation (18), a very 
good approximation for a sphere. If af>)> 1, one has 

q~(a) ~((rf)-I which according to equation (7) implies 
total reflection. In the symmetric Laue case the power 
is equally divided between transmitted and diffracted 
beams for af>> 1, and equation (19) will be a poor ap- 
proximation. 

The diffracting power 

As previously stated it is to be assumed that a(e,) 
will be correctly given by the kinematical theory, i.e., 
that 

a(el) = de ~ 'v-a pk(e,) , (20) 

where Pk(el) is the power of the diffracted beam in the 
kinematical approximation for given direction of inci- 
dence. 

The direction of incidence Uo = Uo ° -  e1171, where Uo ° is 
the ideal Bragg direction and 171 a unit vector in the 
plane of incidence normal to u °. Similarly, for the di- 
rection of diffraction one may set u = u 0 + e2172 + ~3173, u° 
being the ideal diffraction direction and 172 and 173 unit 
vectors normal to u o, 172 lying in the plane of incidence, 
173 normal thereto. One has uO-ug=2H,  where H is 
the reciprocal lattice vector associated with the dif- 
fracted beam. The diffraction vectors s=2n(U-Uo)/2 
can be written as 

s = 2ni l  + As,  

AS = 2~Z[e1171 + e2172 "q- e3173]/,~, . (21) 

The intensity of the radiation scattered in direction 
u is given by the familiar expression 

eEFK 2 
Ik(Cl,~2,ea)=J0 mcER I-  r exp(iAs. L)[ 2, (22) 

where L is a lattice vector and R the distance from 
the crystal to the counter. The total power recorded 
in the counter, Pk of equation (20), is 

j0  

t~ 

Fig.2. A crystal parallelopiped with one edge, of length t °, 
along the incident beam, a second edge, of length t °, along 
the diffracted beam. The third edge, t ° , is normal to the plane 
of the Figure. 
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Pk(el)= R2 I I Il~de2dg3 . (23) 

The summations and integrations of equations (22) and 
(23) represent a standard problem in diffraction theory 
and are readily carried out for the parallelopiped shown 
in Fig. 2. The expression for a(el) becomes 

sin2~0Cel 
a(ex) = Qe 0z~el) 2 , (24) 

where e=t±/2.  The meaning of the symbol t± is t±= 
It~ x u01 = to sin 20. 

If one uses the series expansion for the function q~(a), 
the evaluation of y according to equation (9) will in- 

volve the integrals ~ andel. One has 
d 

f ade1 = Q, I azdel = 2Q2c~ 

S S 1343 G3dgl = ~O3o~z, a4del =-~Q c~ . (25) 

The expression for a(el) becomes very complicated 
for a crystal of arbitrary shape. However, for a sym- 
metrically shaped crystal equations (24) and (25) will 
be approximately correct if everywhere t± n is replaced 
by its mean value t± n over the crystal volume. 

For the infinite plane parallel plate of thickness Do 
one must set t o = Don, n being the plate normal. Hence 
t±= Do sin 0 for the symmetrical Laue case and t±= 
Do cos 0 for the symmetrical Bragg case. If the crystal 
is a sphere of radius r, [± is the mean thickness meas- 
ured normal to the incident beam and parallel to the 
plane of incidence so that f±=}r. 

It will be shown presently that equation (9) will give 
a very simple expression for y if the approximation of 
equation (19) is used and if the delta function of equa- 
tion (24) is replaced by an equivalent expression of 
Poisson form. Let a =  a/(1 + bZe~) and let it be required 

that I a&l and I a2de' agree with the results of equa- 
t /  I /  

tions (25). The sought approximation to equation (24) 
becomes 

a(el) ,,~ -}ao~ (26) 
2 " 

The extinction factor 
The results under the two preceding headings may 

now be combined to yield the formula for the extinc- 
tion factor y. 

The two approximate expressions of equations (19) 
and (26) substituted in equation (9) give 

3 - r . 2 _  5 x - 3  y = ( l + 2 x )  - ÷ = l - x + ~ - ~  ~.. + . . . ,  
x=-}Qo~f . (27) 

It is useful to list the specific forms of x for various 
crystal shapes: 

Symmetrical Laue case 

l e2FK2Do ~ 
meZ V 

x_= 
3 cos20 

(28a) 

Symmetrical Bragg case 

I ezFK2D° 12 
mc2 V 

x=  
3 sin20 

(28b) 

Parallelopiped of Fig. 2 

e2FK2to [2 

x = 2 mc z V (28c) 
3 

Sphere of radius r 

l e2FK2r 

mc2V (28d) 
x- -3  2 sin 20 

The exact results of the dynamical theory are known 
only for the infinite plane parallel plate (Zachariasen, 
1945), and they are: 

Laue case 

S J2n+l(2 3V~ ) 

y= 1/-3x 
= 1 - x +~ox 2 -  a-agx 3 + . . .  (29a) 

Bragg case 

tanh 3V~ - 1 - x + ~x 2 -  ~-~-x513 + . . .  (29b) Y= 

with the same expressions for x as given in equations 
(28a) and (28b). 

The asymptotic values at large x are y =  1/213/~x and 
y = 1/]/3-x respectively, whereas equation (27) gives y = 
1 / 21/~. The agreement with the findings of the dynam- 
ical theory is not good for large x in the Laue case; 
but this was to be expected since equation (19) is a 
poor approximation to the correct form of equation 
(12). 

The substitution of equation (26) for equation (24) 
does introduce a small error. If  equation (24) is used, 
the series expansion of y for the Bragg case becomes 

y =  1 - x + ¼ x 2 -  ,¢x3+ . . . .  (30) 

which is in excellent agreement with the exact solution 
of equation (29b). 

The equations of the dynamical theory have not 
been solved for a perfect crystal sphere. Hence it is 
not possible to state precisely how well equations (27) 
and (28d) agree with the exact results for this shape. 
However, the satisfactory agreement for the Bragg case 
suggests that these equations are acceptable approx- 
imations. 
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If one assumes that the integrated intensity can be 
measured to an accuracy of two per cent, the appli- 
cability of the kinematical intensity formula (y= 1) is 
restricted to the range x < 0.02. In a typical example, 
such as the strongest reflection of a-quartz for which 
] F ] / V = 0 " 3 4 8 x l O E 4 c m  -3, the requirement x<0.02 
gives r < 0 . 5 1 x l 0 - 4 c m  for Cu Kc~ radiation and 
r<0.76 x 10 .4 cm for Mo Kc~ radiation. 

3. The real crystal 

As stated in § 1 it will be assumed that the mosaic model 
of C. G. Darwin correctly describes a real crystal. The 
domains x~ill be imagined to be all of the same size 
and nearly spherical in shape. Hence, for the quantities 
f and f± of the preceding sections one may set f= /1  = 3r 
where r is the mean domain radius. 

For the present, ordinary absorption effects will be 
neglected, and it will be assumed that the linear dimen- 
sion of the domain is small compared with that of the 
mosaic crystal. Thus the crystal will contain a great 
many domains, the orientations of which are governed 
by the distribution function W ( A )  of equation (3). 

The half width of W is 

A~ =g-l(log 2/2rc) ~ = 0.332g-~. (31) 

The quantity rr(ea) of the preceding section represents 
the diffraction pattern of a single domain as function 
of the direction of incidence e~. According to equations 
(24) and (26) the half width of the diffraction pattern 
is given by: 

from equation (24), (ex)~ =0"2952r -1= 0"443c~ -1 , (32) 
from equation (26), (el)~= 1/2zc2r-X = 3/4roe. 

When c~>~g it implies that the distribution function 
W is much wider than the diffraction pattern of a 
single domain, while the situation is reversed when 
e~g .  

The diffraction in a mosaic crystal can be treated 
in precisely the same manner as was done for a perfect 
crystal. The basic equations will have the same form 
as equations (4), namely 

~I0 
3-T-~- = - 6 1 o + 6 1 ,  

" c~ T 2  - -  - M + Mo , 

10=J0 at 7 '1=0, 

10= 0 at T2=0.  (33) 

Instead of h and t2 the corresponding capital letters 
are used for the mosaic crystal, and because of the 
misalignment of the domains one has to use the expec- 
tation value ~ for the diffraction power, where 

0"(/~1) = f W(A)°'(81 Jr- A ) d A .  (34) 

The integration of equation (34) can be carried out 
if one uses the approximation a(el)~ Qc~ exp(-zrc~2~) 
with equation (24) and the result is 

sin2rc~'~l 
6 z Q ~ '  exp(-rc~'ze]),~Q0¢ ' (re ,e,) z (35) 

c~' = t,"2gc¢/I,'~ + 2g 2 . 

In using the Poisson form analogous to equation (26) 
it is convenient to use the approximate form for c¢' ob- 
tained by replacing | /2g with 3g/2. Hence, the follow- 
ing expression for 6 results: 

6 ~  
(4/3)Qcd 

1 + [(4zr/3)~'el] 2 

c~' ~ o~/]fl + (2~/3g) 2 . (36) 

When c~>>g one has accordingly ct ' - 3  -~g ,  and when 
~,~g ~ '=~.  

The process for solving equations (33) is precisely 
analogous to that used for equations (4) except for the 
replacement of tl, t2, a by 7"1, T2, 6. For real crystals of 
symmetrical shape one may accordingly adopt the ap- 
proximation equivalent to equation (19), i.e. 

1 
(p(6)~ 1 + 6 ~ '  (37) 

being the mean path length through the crystal. 
Hence, with equation (36) and (37) the formulas for 

the diffraction pattern, P(el) ,  and for y =  Q-1 f (~) 
t /  

d(G), become 

4o~'/3 
P(el )  = JoQv  i + 2 x + O ~ c ( e d 3 ) 2  , (38a) 

y=(1  + 2x) -~ , (38b) 
x=-}Qog T . (38c) 

It has been assumed so far that t is negligible com- 
pared with T; but this is not necessarily true. Consider 
the diffraction by a single domain for which A is zero. 
The diffracting power within the domain is a(el), while 
outside the domain it is #(el). The mean path length 
through the single domain under consideration is f, 
and i r - ¢  is the path length through other domains. 
Thus, x in equation (38c) should be replaced by its 
mean value )7 given by 

~ = - } Q c ~ [ f + ( T - [ ) / ~ I  ÷-(2c~/3g)2]. (39) 

If ordinary absorption is taken into account, the 
intensities 10 and 1' of incident and diffracted beams 
must satisfy the equations 

- (p + o-)1 o + a l '  

c~I' 
- (lz + a f t '  + a I  o . (40) eT2 

The solutions are l o = I o e x p [ - p ( T l + T 2 ]  and I ' =  
I exp[-p(T1 + T2)], where I0 and I are the solutions of 
equations (33). 
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The approximation 

I " ~ I  exp[- l l (Tlq-  T2)]=IA(l~) (41) 

is justifiable unless the absorption effects are large. The 
integrated intensity will accordingly be reduced by the 
transmission factor A(/~). The only effect on the results 
obtained for the extinction factor y relates to the eval- 
uation of the mean path length T which must be weight- 
ed with the absorption term exp[-/~(T1 + T2)]. Accord- 

ingly T= -A-IdA~d/x . (42) 

It remains to consider the effect of polarization. Let 
it be assumed that the incident radiation is unpolarized. 
If 2o be the value of 2 for K=  1, the corresponding 
value for the parallel component of polarization is 
K Z x 0  . Thus the expression for y with polarization effect 
included is 

(1 + 220) -÷ + K2(1 + 2K220) -~ 
(43) Y . . . . . . .  1 -~- K2 

In the limiting case when 2o >7 1 one has 

y z ( 1  + [KI)/V'Z%(1 + K2). (44) 

For 20 < 5 the following expression for y can be used 
instead of equation (43), and without introducing per- 
ceptible error, 

( y = 1 + 2 P 2  20 , (45) 
Pl 

where Pn = (1 + KZn)/2 so that Pz/Pl = (1 -k- K4)/(1 + K2). 
The function p2/pl does not vary much over the ob- 
servational range. The maximum value of unity occurs 
at 20=0,  90 ° and 180 °, the minimum value of 2(1/2-1) 
at 20 = 49.9 o and 130.1 °. 

It may be useful to summarize the findings for the 
general case: 

= ~ y  = JoQoplvA (tu)y (46a) 
y = (1 + 2p22o/pl) -~ (46b) 

2o=flQo[f+(T-f)/[/1 +(fl/g)2] (46e) 
fl= 2[±/32 , (46d) 

where Q0 is given by equation (2b) with K =  1 and T 
by equation (42). One has [=3r/2 and fl=2-1r for a 
spherical domain of radius r. 

It should be kept in mind that equations (19) and 
(37) for ~0(cr) and ~0(6) as well as equations (26) and 
(36) for a and ~ are approximations, but that equa- 
tion (46b) is a direct consequence of these simplifica- 
tions. A careful analysis of the series solutions for 
spherical domains shows that equations (19) and (37) 
tend to underestimate ~0(a) and ~0(~) while the Poisson 
approximations of equations (26) and (36) may give 
over-estimations for o- and 6. On theoretical grounds 
it is therefore difficult to tell which of the following 
three forms of the function y is to be preferred. 

y = t a n h l / 3 - x / l / ~ = l - x + ~ - ~ 2 - 5 a ~ 3 +  (47a) 
5 " ~  3 5  . . . . .  

y=(1  +2x) -÷=  1 - x + ~ x 2 - ~ x 3 + . . .  (47b) 
y =  tan-~ 3 ~ / 3 ~ =  1 - x + ~ x Z - ~ - x 3 + . . .  (47c) 

The three proposed equations for y cannot be dis- 
tinguished when x is small. However, for x>> 1 there 
are significant differences. Thus when x =  10, one finds 
y=0.183, 0.218, 0.254 for equations (47a), (47b), (47c) 
respectively. 

4. Discussion 

The two terms of equation (46c), flQof and 
flQo(T_[)//- ~ +(fl/g)2, correspond to the concepts of 
primary and secondary extinction as introduced by 
Darwin (1922). As mentioned at the end of§ 2, primary 
extinction becomes negligible if flQof<O'02, and ex- 
periments show that this condition is fulfilled even for 
the strongest reflections of most crystal specimens. 

When primary extinction can be neglected, equation 
(46c) reduces to 

xo= r2-1QoT/~/1 q-(r/)~g) 2 , (48) 

which consequently becomes the basic equation for 
secondary extinction. 

There are two important types of real crystals: 

Type I, r/Ag>~ 1 

xo=gQoT (49a) 

Type II, r/2g ~ 1 

x0 = r2 -1 Q0 T,  (49b) 

with equation (48) covering the intermediate type. In 
type I crystals the distribution function W is much 
wider than the diffraction pattern from a single domain, 
whereas the reverse situation is true in type II crystals. 

The theoretical study of secondary extinction by 
Darwin (1922) and recent work (Zachariasen, 1963, 
1965) have been confined to crystals of type I. It seems 
that the possible existence of type II crystals and of 
secondary extinction governed by equation (49b) has 
not been considered before. 

It is interesting to note that the integrated intensity 
for type I crystals depends upon g, but is independent 
of r. For crystals of type II on the other hand the inten- 
sity depends on r and not on g. 

The presumed absence of primary extinction implies 
r < 10 -4 cm for a strong reflection and hence that g for 
type I crystals is of the order of 10 +3 or smaller. The 
quantity Q0 ~ 10-2-10-1 cm -1 for the strongest reflec- 
tion. Hence, if T~  10 -2 cm, x0 < 1 and y > 0.5. In other 
words, very large extinction effects cannot occur in 
type I crystals. 

It is seen that values x0>~ 1 are possible for type II 
crystals even if r is as small as 0.5 x 10 -4 cm. 

Equations (48), (49a) and (49b) have the same de- 
pendence on scattering angle. If a single wavelength 
is used, it is accordingly impossible to tell from ex- 
periment whether the crystal is of type I or II or inter- 
mediate type. However, the dilemma is readily resolved 
if the intensities are measured for two different wave- 
lengths. The procedure can be illustrated by an ex- 
ample: results reported for e-quartz (Zachariasen & 
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Plettinger, 1965) gave y=0.33 for the reflection 101 
and Cu Ka radiation. Measurements with Mo Ka 
radiation and the same crystal sphere gave y=0.41.  
The corresponding values for x0 according to equation 
(46b) are 4.5 and 2.5 respectively with a ratio of 1.8 
for the two x0 values. The calculated ratio is 3.84 ac- 
cording to equation (49a) and 1.77 according to equa- 
tion (49b). Thus experiments prove conclusively that 
the quartz specimen is of type II, the Cu Ka result 
giving r=0 .50x  10 -4 cm, the Mo Ka result r=0.49 x 
10 -4 cm. 

Many writers over the past forty years have reported 
experimental determinations of the parameter 'g' for 
various crystal specimens on the assumption that all 
real crystals are of type I. According to the results of 
this paper some, and possibly all, of the crystals in- 
vestigated may have been of type II, in which case the 
reported 'g' values are the quantities r2 -1. 

If r2 -1 and g are of the same magnitude, one must 
use equation (48) rather than equation (49a) or (49b). 
Experiments with two different wavelengths will then 
give both parameters r and g. 

With the aid of a well collimated incident X-ray 
beam it is possible to measure the diffraction pattern 
P(el). An examination of equation (38a) shows that 
the determination of the half width of this pattern will 
not provide any new information. 

The approximations of this paper led to the formula 
y=(1  +2x) -~. However, as mentioned earlier, one can- 
not exclude from consideration the hyperbolic or arc 
tangent forms given in equations (47a) and (47c). 
Measurements on a-quartz performed with both Cu Ka 
and Mo Kc~ radiations (to be reported in detail in a 
forthcoming article) indicate that equation (47a)is un- 
satisfactory, and that equation (47c) may be slightly 
preferable to equation (47b). 

The writer recommends that the new intensity for- 
mula, rather than the crude kinematical approxima- 
tion, be used in the analysis of crystal structure data. 
This recommendation implies the modification of least- 
square refinement programs so that the mosaic crystal 
parameters r and g as well as scale factor, positional 
and thermal parameters are varied. In this manner the 
extinction correction y+ will be included in the calcu- 
lated structure factor. Indeed, D. Cromer and A. Larsen 
(according to private communication) have adopted 
this logical procedure at Los Alamos Scientific Lab- 
oratory. 

The general intensity formula presented in this paper 
provides a theoretical basis for the interpretation of 
experimental data involving large extinction effects. It 
is likely therefore that the structure parameters (in 
particular the thermal ones) can be found with greater 
precision than has been possible hitherto, and that 
more reliable determinations can be made of experi- 
mentalfcurves. The new result, that the domain radius 
can be found from experiment for crystals of type II 
and intermediate type, has interest and possible use- 
fulness. 

This paper deals specifically with X-ray diffraction. 
It is trivial to extend the results to electron and neu- 
tron diffraction. The general formulas of equations (46) 
remain valid; but one has Pl =p2 = l, and the expres- 
sion for the quantity Q0 must be appropriately modi- 
fied. 

The writer is deeply grateful to his friend and col- 
league, Professor S. Chandrasekhar, for the exact solu- 
tion of equations (4) as presented in the Appendix. 
The work was in part supported by the Advanced Re- 
search Projects Agency under Contract SD-89. 

A preliminary account of the results of this paper 
was given in Physical Review Letters. 

APPENDIX 

Professor S. Chandrasekhar, to whom the series solu- 
tion of equation (4) [given in equation (14)] was shown, 
has succeeded in finding the exact solution in terms of 
Riemann functions. 

The Chandrasekhar solution is (with ~=o-tl and 
r/= at2) 

10=J0 exp{-(~  +r/)} [o¢'0(i2 ]/~-r/) 
k 

from which I(~, r/)= J0-I0(r/ ,  ~) can be found by inter- 
change of variables. 

The exact formula for (p(a), for the parallelopiped 
of Fig. 2, becomes (with G0 = at ° = r/0 = at2 °) 

~o - [G(~o) + fi°G(~)d~ ] 
~o(~) = ~ 

I ° a(~)= e x p -  (x + ~o)Jo(i2l/x~o)dx . 
0 

The asymptotic form for ~0>~ 1 is ~0--(b -1 implying 
total reflection. 

Unfortunately no tabulation of the function G(~) is 
available. 
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